Broad-Specificity mRNA–rRNA Complementarity in Efficient Protein Translation

نویسندگان

  • Pamela A. Barendt
  • Najaf A. Shah
  • Gregory A. Barendt
  • Casim A. Sarkar
چکیده

Studies of synthetic, well-defined biomolecular systems can elucidate inherent capabilities that may be difficult to uncover in a native biological context. Here, we used a minimal, reconstituted translation system from Escherichia coli to identify efficient ribosome binding sites (RBSs) in an unbiased, high-throughput manner. We applied ribosome display, a powerful in vitro selection method, to enrich only those mRNA sequences which could direct rapid protein translation. In addition to canonical Shine-Dalgarno (SD) motifs, we unexpectedly recovered highly efficient cytosine-rich (C-rich) sequences that exhibit unmistakable complementarity to the 16S rRNA of the small subunit of the ribosome, indicating that broad-specificity base-pairing may be an inherent, general mechanism for efficient translation. Furthermore, given the conservation of ribosomal structure and function across species, the broader relevance of C-rich RBS sequences identified through our in vitro evolution approach is supported by multiple, diverse examples in nature, including C-rich RBSs in several bacteriophage and plants, a poly-C consensus before the start codon in a lower eukaryote, and Kozak-like sequences in vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rRNA complementarity within mRNAs: a possible basis for mRNA-ribosome interactions and translational control.

Our recent demonstration that many eukaryotic mRNAs contain sequences complementary to rRNA led to the hypothesis that these sequences might mediate specific interactions between mRNAs and ribosomes and thereby affect translation. In the present experiments, the ability of complementary sequences to bind to rRNA was investigated by using photochemical cross-linking. RNA probes with perfect comp...

متن کامل

An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation

There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mR...

متن کامل

An efficient Shine-Dalgarno sequence but not translation is necessary for lacZ mRNA stability in Escherichia coli.

The 5' ends of many bacterial transcripts are important in determining mRNA stability. A series of Shine-Dalgarno (SD) sequence changes showed that the complementarity of the SD sequence to the anti-SD sequence of 16S rRNA correlates with lacZ mRNA stability in Escherichia coli. Several initiation codon changes showed that an efficient initiation codon is not necessary to maintain lacZ mRNA sta...

متن کامل

Identification and characterization of E.coli ribosomal binding sites by free energy computation.

Sequences upstream from translational initiation sites of different E.coli genes show various degrees of complementarity to the Shine-Dalgarno (SD) sequence at the 3' end of the 16S rRNA. We propose a quantitative measure for the SD region on the mRNA, that reflects its degree of complementarity to the rRNA. This measure is based on the stability of the rRNA-mRNA duplex as established by free e...

متن کامل

ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs.

The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation-enhancing property of these sequences. To verify this notion, we designed beta-glucuronidase (GUS) mRNAs differing only in the natur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012